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Introduction 

 

This report describes completion of tasks to satisfy project 2010/1012.361 ‗A risk assessment and 

simulation modelling framework for exotic disease prioritisation in the Australian pig industry‘. Part 

2 of this project is focused on development of methods for assessing the disease status of feral pig 

populations.   

 

Project Objectives and Outcomes 

 

1. Conduct an Aerial Survey of Feral Pigs 

Two aerial surveys of feral pigs in the Fitzroy River basin centred on Fitzroy Crossing, Western 

Australia were conducted in August 2011 (with additional funding and in-kind support from the 

Department of Agriculture and Food, Western Australia). See milestone reports 1 and 3 for details. 

 

2. Using a Disease Spread Model, Simulate Likely Disease Spread Scenarios Based on the 

Estimated Population at-Risk and Population Demographics 

The spread of classical swine fever in the Fitzroy River basin feral pig population was successfully 

simulated. The estimated population at-risk and population demographics were initially based on 

expert opinion and published literature.  See milestone report 2 for details. In addition, the results of 

this research has been published (and is freely available online at 

http://www.veterinaryresearch.org/content/43/1/3/abstract ) in the peer-reviewed journal Veterinary 

Research. This journal is ranked number 1 out of 140 journals in the field of Veterinary Science, with 

a current impact factor of 3.6. 

  

http://www.veterinaryresearch.org/content/43/1/3/abstract
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3. Calculate the Minimum Number of Feral Pigs that Would Need to Be Sampled to 

Detect Disease Presence or to Demonstrate Freedom from Exotic Diseases that 

Threaten the Australian Pig Industry, such as Classical Swine Fever, by Post-Hoc 

Sampling of the Simulated Outbreaks 

Details of methods to calculate the sample size to detect an exotic disease incursion  or to 

demonstrate freedom  have previously been reported in milestone report 3. In summary, early in 

an outbreak many more herds are required to undergo surveillance than later (when the outbreak 

has spread across the landscape).  Additionally, random surveillance across a region is less efficient 

than spatially targeted surveillance around the index case (e.g. radial surveillance). See Appendix 1 

for details.   

 

4. Investigate the Influence of the Spatial Distribution of Feral Pigs, Family Groupings, 

and Age and Gender Distributions on the Methodology Developed 

See milestone report 3 for details. In summary, the aerial survey revealed a much smaller (lower 

density and distribution) feral pig population in the study area than in the previously simulated feral 

pig population. This resulted in simulated epidemics that generally died out several weeks or months 

after an incursion occurred (compared with previous epidemics that lasted several years). This 

suggests that the Fitzroy River basin population would only sometimes sustain an incursion of a 

transboundary disease such as classical swine fever, and that an incursion may never be detected due 

to a rapid fadeout of the disease (i.e. before passive surveillance could detect the outbreak). This is 

not true of all populations across northern Australia where population densities and distribution are 

much higher (for example, Cape York Peninsula).  This is also unlikely to be true in the Kimberley 

region of Western Australia in all years because sometimes higher densities of feral pigs will occur 

(due to a good season, less flood related mortality, less culling and so on). However, results suggest 

that the assumption that these disease incursion would continue to spread in the absence of control 

efforts might not be valid. Our results suggest that a 'wait-and-see' (whilst conducting intensive 

surveillance) policy could be feasible where surveys demonstrate pig densities are low and 

biosecurity is sufficient to prevent disease spread from infected areas (e.g. public adherence to 

movement restrictions). 

 

5. Develop a Decision Making Tool for APL Use Following the Discovery of an Outbreak 

of Disease in Feral Pigs 

Details are provided in Appendix 2.   
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Project Outputs 

 

1. Feral pig population distributions simulated and reported 

(Milestone report 3) 

 

2. Disease Spread Model created, applied and results reported 

(Milestone report 2; Veterinary Research 2012; 43:3) 

 

3. Sample size calculations to detect disease and demonstrate freedom 

(Appendix 1) 

 

4. Sample size calculations to detect disease and demonstrate freedom 

(Appendix 1) 

 

5. Decision support flow chart for APL use during a classical swine fever epidemic that 

involves feral pigs 

(Appendix 2) 

 

Conclusion  

This work has been completed.  

 

Useful findings from the research are that according to simulation modelling, classical swine fever will 

not always establish for any length of time in feral pigs in some low density areas of northern 

Australia. The feral pig distributions in the Kimberley appear to be on the cusp. Some years disease 

may establish and spread for some time, but in other years, disease may not establish. For example, 

in the year we conducted aerial surveys the abundance and population structure was not sufficient 

to sustain infection for longer than 2-3 months. This was likely caused by a "big wet" season, which 

reduced the feral pig population substantially. 

 

Our simulation modelling reveals that targeted, spatially explicit surveillance around an index case is 

the most efficient sampling strategy. Depending on the length of time an epidemic had been 

progressing, the densities of herds and the prevalence of disease, as few as two herds or as many as 

230 herds were required to be surveyed before an epidemic was detected.   

 

The research team thanks APL and pig producers for providing the funding to successfully complete 

this research. 
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Appendix 1 - Effective Surveillance Techniques Following a Classical Swine Fever 

Incursion in the Kimberley Region, Western Australia 

 

Note: This represents Chapter 8 of a thesis to be submitted 31 March 2012 by Ms Edwina Leslie 

B.An.Vet.Biosci (Hons) for award of a PhD degree, Faculty of Veterinary Science, The University of 

Sydney 

 

Introduction 

 

Surveillance and control strategies can significantly influence the outcome of an infectious disease 

incursion (Klinkenberg et al., 2005). The ability to detect infection and to prove disease freedom 

influences decision making. Factors such as domestic and international trade, economic and social 

loss and public health need to be considered (Boklund et al., 2008; Domenech et al., 2006; Thulke et 

al., 2009). Surveillance methods can be assessed and improved through the use of epidemiological 

models. Such models, which include important disease spread parameters, can be used to map 

potential outbreaks and evaluate the effectiveness of surveillance and control strategies (Willeberg et 

al., 2011). Over the last several decades models have been developed to simulate outbreaks of 

important transboundary diseases such as foot-and-mouth disease (FMD) and classical swine fever 

(CSF) to assist in preparedness planning for policy formulation, decision making and economic 

impact assessments (Harvey et al., 2007). Garner et al. (2007) suggested that models are most useful 

prior to an outbreak to allow for contingency and resource planning, risk assessment and 

appropriate training for application during the event of a disease incursion. 

 

Transboundary animal diseases (TAD‘s) such as CSF have been reported to the OIE from over 60 

countries during the last 15 years (Donahue et al., 2011). The highly contagious nature of the CSF 

virus and ability to spread rapidly amongst both domestic swine and wild pig species (Sus scrofa) has 

substantial economic and social impacts (Donahue et al., 2011; Meuwissen et al., 1999). Wild pig 

species refers to both feral pigs and wild boar in reference to the chapter. TAD‘s are diseases that 

are of economic, trade and/or food security importance for a large number of countries and can 

rapidly spread through susceptible populations reaching epidemic levels, irrespective of country 

borders (Otte et al., 2004). The close vicinity of eastern Indonesia to northern Australia poses a risk 

for the reintroduction of CSF into Australia. Since its eradication in 1961, Australia has maintained 

its CSF free status through the establishment of biosecurity policies implemented by organisations 

such as the Australian Quarantine and Inspection Service (AQIS) and its Northern Australia 

Quarantine Strategy (NAQS) (AQIS, 2005). Animal Health Australia (AHA) developed the Australian 

Veterinary Emergency Plan for classical swine fever (Animal Health Australia, 2009) following 

eradication to provide contingency plans in the event of an outbreak and methods for use to provide 

proof of freedom. The reintroduction of CSF into Australia would have devastating impacts on the 

pig industry with the immediate loss of export markets taking effect, until eradication was completed 

(Animal Health Australia, 2009).  

A variety of different diagnostic tests are available for CSF. The use of virus isolation in cell culture is 

classified as the ‗gold standard‘ diagnostic tool for CSFV (Moennig, 2000). Alternative virus detection 

methods including enzyme-linked immunosorbent assays (ELISA‘s) (Greiser-Wilke et al., 2007; 

Koppel et al., 2007) and polymerase chain reaction (PCR) assay‘s (Greiser-Wilke et al., 2007) have 

been developed.  

Serosurveillance has been used as a diagnostic tool for monitoring both wild boar and domestic pig 

populations (Elbers et al., 2000; Suradhat et al., 2007). However, for early detection of CSF in 
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disease-free populations, Crauwels et al. (1999) found that the probability of detecting an epidemic in 

its early stages was low. 

The closest islands of Indonesia to the Northern Territory and Western Australia are those in Nusa 

Tenggara Timur province. This chapter is an important component to the thesis because it 

demonstrates what would be the most appropriate surveillance and control strategies to adopt in 

the event of a CSF incursion in Australia. CSF in wild pig herds has been a recognised source of 

infection for many domestic herd outbreaks (Fritzemeier et al., 2000; Lipowski, 2003). For example, 

in Germany during the 1990‘s Fritzemier et al. (2000) determined that 59% of index cases for CSF 

were a result of infected wild boar populations (Boklund et al., 2008). 

The wild pig (Sus scrofa) is an invasive species in Australia that impacts agricultural land and the 

environment while also competing with native and domestic animals (Cowled et al., 2008a; Spencer 

et al., 2005). Their role as a disease reservoir for infections such as CSF, brucellosis, swine vesicular 

disease virus and porcine reproductive and respiratory syndrome (PRRS) has been recognised in the 

scientific literature (Montagnaro et al., 2010; Wyckoff et al., 2009). In Australia, the wild pig 

population is predominantly distributed throughout the eastern and northern regions of Australia, 

with the densest population being located in north Queensland (West, 2008). Studies have suggested 

that wild pig herd structure can be divided into two categories, female mobs and solitary boars 

(Spencer et al., 2005). This can influence disease transmission between herds. The high level of 

connectivity in densely populated areas can influence disease spread in the event of an outbreak and 

the persistence of CSFV (Cowled et al., 2012; Siembieda et al., 2011).  

The objectives of this study were to analyse simulated CSF outbreaks in The Kimberley region to:  

 Determine the effectiveness and efficiency of different surveillance strategies to detect and 

delineate infection, including random surveillance and two more practical methods of 

surveillance.   

 

Methods 

 

Model Description  

A model developed by Cowled et al. (2012) was used to simulate wild pig inter herd CSF spread in 

time and space following an incursion in The Kimberley region, Western Australia. Within The 

Kimberley region the Fitzroy River area was selected as a representative population for disease 

introduction (Cowled et al., 2012). The location of the study area can be viewed in Figure 8.1. The 

model was coded in MapBasic® and output data obtained from MapInfo® Professional Version 10.5 

(Release Build 15, Pitney Bowes Software, Inc.).  

 

The population dataset used in the model was derived from wild pig biology and ecology literature. 

The total number of herds simulated in the model was 5304. This number was generated using 

several data sources. Questionnaire surveys conducted by Cowled et al. (2009) and Woolnough et 

al. (2004) obtained information on pig distribution and densities. Results demonstrated that pigs 

were found across approximately 26,000km2 of The Kimberley region. A ‗core‘ habitat of 16,701km2 

was then identified and divided into polygons, classified as having low, medium or high pig densities. 

Published literature was then used to extract density and population parameters to use in the model 

allowing an estimate for the number of pigs herds present in the region (refer to Cowled et al. 

(2012) for details). 
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The model considered factors including pig density and movements, herd, age, social structure and 

the population distribution and habitat connectivity. Population parameters set in the model can be 

viewed in Table 8.1 where both herd types, solitary boars and female groups were considered. Each 

herd in the model was allocated an annual home range. Where applicable, probability distributions 

were placed around input parameters to account for uncertainty and variability (Table 8.1).  

 

The model was able to simulate CSF outbreaks according to different scenarios. The spread of CSF 

could be investigated without the use of surveillance or control strategies by altering input 

parameters (refer to Figure 8.2). In addition, the model was also coded for surveillance techniques 

including radial and leap frog sampling (defined in section 8.2.5.2 and 8.2.5.3). The population was 

aggregated into cells where a 10km x 10km grid based system was applied to the study area under 

the assumption that three helicopters were available for surveillance. The model factored in a lag 

period of three days following disease detection in order to account for the allocation of resources 

and organisation of control measures. Finally, control options were coded into the model where 

culling or vaccination could be implementation in the event of an outbreak. If surveillance and 

control were used in a simulation, surveillance was activated first, and once completed, control was 

then initiated. Assumptions included four helicopters for control and the expected number of herds 

to be surveyed per team per day was 40. 

Important baseline outputs to consider for this chapter included the number of susceptible, latent, 

infected, immune and dead pigs. It was assumed that once a pig was classified as immune it could no 

longer infect other pigs. The model also provided epidemic length as an output to allow comparisons 

between different simulation scenarios. When surveillance was simulated, reference could be made 

to the number of surveillance days and the number of cells being sampled. The inclusion of control in 

a simulation allowed reference to the total area covered (km2) from beginning of surveillance to 

completion of control to enable comparison of surveillance effectiveness. For further model details 

refer to Cowled et al. (2012). 

Model Limitation 

Cowled et al. (2012) investigated available literature to determine input values and validate 

assumptions. Several limitations of this model need to be highlighted. The model assumed that 

infection was not spread through human movements of infected wild pigs or fomites, only simulating 

spread directly as a result from wild pig populations. As a result, we can expect these values to be 

lower estimates for the potential spread of CSF. As mentioned by Cowled et al. (2012), human 

population density is low in The Kimberley (0.1 person/km2;  ABS, 2011). This supported their 

assumption for limited CSF transmission via human movements.  

 

It has been recognised in domestic pigs that the process of CSF infection can be acute, subacute or 

chronic (Dahle & Liess, 1992; Floegel-Niesmann et al., 2003). The presence of chronic CSF infection 

in wild pigs has yet to be documented (Artois et al., 2002; Cowled et al., 2012). Consequently, the 

model assumed only the presence of acute infection in wild pigs. The course of CSF infection is 

influenced by various factors including age, breed and environment (Floegel-Niesmann et al., 2003). 

Literature has suggested the presence of both high and moderate strains of CSF in Indonesia which 

can both result in acute forms of CSF infection (Frias-Lepoureau & Greiser-Wilke, 2002; Paton & 

Greiser-Wilke, 2003; Paton et al., 2000) aligning with this assumption.  

Previous models investigating wild pigs have identified water sources as primary environmental 

consideration for pig population distribution. Choquenot et al. (1996) suggested that the distribution 

of feral pigs in eastern and northern Australia is largely dictated by the vicinity of watercourses and 

flood plains. The Kimberly region is a hot, dry area with the Fitzroy River catchment being identified 
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as an area with high feral pig abundance (Woolnough et al., 2005). This model assumed pigs to be 

located within 2km of a water source where daily requirements for water access were also assumed. 

Previous models in the literature have demonstrated limitations regarding this parameter were a 

model developed by Milne et al. (2008) assumed pigs would only require water every 4 to 8 days in 

northern Australia.  

Model Use  

Using this model, two different approaches were taken to investigate disease surveillance. Approach 

1 aimed to determine the number of herds required for sampling to detect disease following a CSF 

outbreak. Approach 2 aimed to compare three different surveillance techniques, simple random 

sampling (SRS), radial and leap sampling and their effectiveness in detecting and delineating CSF 

infection. For both approaches time points were compared for disease detection on day 42 (6 

weeks), 168 (6 months) and 365 (1 year) (Figure 8.3). These time points were selected to 

demonstrate the extent of a CSF outbreak following delays in disease detection. Hone and Pech 

(1990) using a model to investigate FMD estimated minimum time to detection of an FMD outbreak 

with a sample size of 200 to be 35 days. Cowled et al. (2012) utilised similar estimates with a 

minimum of 42 days for disease detection. For clarity, when a reference is made to infected pigs, this 

should be taken to mean latent, infectious and immune pig herds. It was assumed that detection of 

CSF index herds was via passive surveillance.  

 

 

Figure 8.1: Wild pig herd distribution in The Kimberley region, Western Australia. Map 

obtained from Cowled et al (2011). The inset identifies the location of The Kimberley 

region in Western Australia. Red dots represent pig herds simulated within known 

Wild pig distributions. The green arrow identifies the introduction site for classical 

swine fever for all simulations. 
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Figure 8.2: Start up screen for wild pig model to simulate a CSF outbreak in The 

Kimberley region, Western Australia. Input parameters can be changed according to 

the scenario being simulated. 
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Figure 8.3: Disease outbreak scenarios simulated by a between herd model investigating classical swine fever transmission and spread 

developed by Cowled et al (2011) using the pig population in The Kimberley region, Western Australia. 

 

Output Used for 

Approach 

 

Approach 1  Approach 2 

Disease Outbreak 

Surveillance 

Strategies 

Time Points for 

Disease Detection 

(days) 

CSF 

Outbreak 

Radial 

Sampling 

Random Herd 

Sampling 

42  168  365  42  168  365  42  168  365  

Leap Frog 

Sampling 
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Table 8.1: Ecological Parameters taken from Cowled et al (2012) for between herd model. 

Parameter Estimate High Low Probability Distribution 

Herd size1 7 45 5 Beta Pert 

Pig density (km2) 1 - 3 - - - 

Male home range (km2) 12 31.2 3.7 Triangular  

Female home range (km2) 7 19.4 2.5 Triangular 

Male daily home range (km2) 1.5 9.99 0.2 Triangular 

Female daily home range(km2) 0.9 3.6 0.06 Triangular 

Male daily linear movements (km2) 1 2 0.1 Triangular  

Female daily linear movements (km2) 0.7 1.8 0.1 Triangular 

112% herds were assumed solitary male boars and the remaining distributed into female groups. 
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Approach 1: Detecting Disease Following CSF Outbreak Using Estimated Population Data 

Approach 1 modelled an outbreak with a single entry point in a high pig density area with no control 

measures implemented. One hundred simulations were run with disease detection occurring at 42, 

168 and 365 days post incursion to determine the extent of CSF spread. A total of 5304 herds were 

present in the model, representing all herds across The Kimberley under the assumption of 1-3 

pigs/km2 (refer to Cowled et al (2012) for more details). Comparisons were then made to 

determine the success of a random surveillance strategy to detect infection at these time points. The 

model was simulated at the herd level under the assumption of approximately 7 pigs per herd 

(Cowled et al., 2012). At each time point for each simulation, a SRS of 290 herds were selected 

according to a sample size calculation to detect disease with 95% confidence level assuming 1% herd 

prevalence and a finite population (Equation 8.1; Thrusfield, 2007. Herds were selected using a 

random number generator (PopTools Version 3.2.5, Hood, 2011). The same random herd sample 

was used for all simulations and time points to allow comparisons to be made across different time 

points.  

 

n = [1-(α)1/D] [N – (D-1)/2]………………………………………………..Equation 8.1  

 

Where:  n = required sample size 

 α = 1- confidence level (0.05) 

 D = estimated minimum number of diseased animals (5304*0.01) 

 N = population size 5304. 

 

Approach 2: Comparisons between Surveillance Techniques - Simple Random Sampling, 

Radial and Leap Frog Sampling 

Approach 2 enabled the comparison of surveillance techniques including SRS, radial and leap frog 

sampling that could be implemented in the event of a CSF incursion. Simulations were run until the 

end of an outbreak and comparisons made for each surveillance technique at different time points to 

determine their effectiveness in detecting and delineating disease (Figure 8.3). Culling was used as 

the control measure for each surveillance technique, implemented following surveillance completion. 

 

Simple Random Sampling (SRS) 

Baseline information was initially generated with simple random sampling used as the surveillance 

technique. Simulations were run until the end of an outbreak with surveillance initiated following 

disease detection at time points 42, 168 and 365 days. One hundred simulations were run with 15 

simulations randomly selected for comparisons between each time point. Fifteen simulations were 

selected based on the proportion of simulations where disease was delineated with the presence of 

a buffer.  

 

In a pilot assessment, 1 out of 5 simulations was not delineated. As a result, using a binomial 

confidence interval with 95% confidence and 10% precision, a sample of 15 was deemed adequate. 

The spread of CSF from these simulations was mapped taking into consideration latent, infectious, 

immune and dead pigs. A total of 290 randomly selected herds (calculated based on 1% prevalence 

and 95% confidence level; Equation 8.1) were then identified on each map.  It was then determined 
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whether disease was detected and delineated during the outbreak based on locations of sampled and 

diseased herds. Disease detection in the population was assumed if a single herd that was infected 

was sampled using the surveillance strategy. Disease delineation was assessed assuming a buffer zone 

of 10 km x 10km (as recommended by (Animal Health Australia, 2009). Delineation was assumed to 

have occurred if the buffering of infected herds identified during surveillance was sufficient to include 

all other infected herds within the study population. Delineation was further assessed with the 

removal of the buffer zone to determine whether delineation was successful.  

Radial Surveillance 

Radial sampling is a surveillance technique that uses an index herd as the starting point. In the model, 

this sampling technique was initiated by a randomly selected index cell. Then all cells immediately 

surrounding the index cell that contained wild pig herds underwent surveillance progressively 

according to resource constraints. Within each selected surveillance cell, sufficient herds were 

sampled to detect disease with 95% confidence, assuming 1% prevalence (Equation 8.1; Thrusfield, 

2007). If an infected cell was found then the sampling area was increased to adjacent cells until no 

infected cells were detected. Surveillance stopped when all scheduled cells had been sampled. 

Sampling occurred day by day under realistic resource constraints. For comparison with leap frog 

surveillance and simple random sampling, 100 simulations were run till the end of an outbreak with 

disease detected at time points 42, 168 and 365 days (Figure 8.3). The simulations were run until 

surveillance was completed. 

 

Leap Frog Surveillance 

Leap frog sampling followed the same initial stages as radial sampling, where an index cell was 

randomly selected. The difference is when there is the detection of an infected cell, surveillance 

occurs in every second cell away from the index cell. Using the concept of the nearest neighbour, 

surveillance begins at the level k = 2 and continues at k = 4, k = 6 and so on until all cells are 

negative (Beyer et al., 1999; Dubé et al., 2009; Raine et al., 2009). Using Figure 8.4 as an example, the 

index cell (yellow) is first identified as infected with sampling first occurring in the red cells, following 

this pattern. The motivation for developing this surveillance method was the increased efficiency for 

widespread CSF outbreaks. For comparison with radial surveillance and SRS, 100 simulations were 

run till the end of an outbreak with disease detected at time points 42, 168 and 365 days (Figure 

8.3). The simulations were run until surveillance was completed. 
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Figure 8.4 (above): Leap frog sampling approach used as a surveillance technique to 

identify infected wild pig herds. The index cell (yellow) was identified as infected with 

classical swine fever. Surveillance is then initiated with sampling at the level of k = 2 

continuing away from the index cell. 

 

Statistical Analysis 

General descriptive analysis was conducted on each scenario using Genstat 11 th Edition 

(PC/Windows XP, 2006, VSN International Ltd., Hemel Hempsted, UK). 

 

Approach 1 

The infection status of randomly selected herds (n = 290) were determined in each simulation and 

for each time point (42, 168 and 365 days). A detected herd was an infected herd identified in the 

surveillance sample. A pre-determined list of herds was used to consecutively identify in a binary 

process (1 = yes or 0 = no) whether a herd was infected. This process aimed to identify the number 

of herds it took to sample before the first case of infection was detected. This was then repeated for 

each time point. 

 

Approach 2 

To assess the effectiveness of the different surveillance techniques, a chi-squared test was performed 

to determine significant differences between herd type (herd types: susceptible, latent, infectious, 

immune or dead) at different time points (42, 168 and 365 days) during outbreak duration. A z-test 

using a Bonferroni adjustment was used to compare which of the herd types and time points were 

significantly different due to comparisons of multiple outcomes. Data were analysed for normality to 

fulfil the assumptions of a z-test. Significance was indicated by P-values < 0.05. Using descriptive 

statistics to determine the similarities between simulations at each time point, a sample of 15 

simulations for each time point was selected for comparison. For each simulation, the extent of the 

outbreak was mapped using MapInfo Professional Version 11 displaying latent, infectious, immune 

and dead herds. Following this, 290 randomly selected herds were then identified on the map. Using 

visual observations and recordings of the number of infected pigs (latent, infectious and immune) 

detected through SRS, it was determined whether at least 1 infected herd was detected with SRS 

and whether disease was delineated with the presence and absence of a buffer zone.  

 

Results 

 

Approach 1 

The model output obtained for approach 1 demonstrated that in the early stages following an 

incursion (< 6 weeks post incursion) a minimum of 28 herds needed to be sampled to detect disease 

(Table 8.2). In the first few weeks, only the presence of latent and infectious herds were detected. 

Immune pigs were not detected till later in the outbreak (> 6 months). The number of infected 

herds peaked at day 290 post incursion (Figure 8.5).  
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Table 8.2: Model estimates following a typical incursion of classical swine fever in the 

Kimberley region, Western Australia with random herd selection to detect disease (L = 

latent, I = infectious, Im = Immune; standard deviation displayed in table). 

Day post 

incursion 

No. of herds 

sampled to 

detect disease 

No. of 

days 

sampling 

Latent, 

infectious, 

immune, 

No. Infected 

Pigs (L, I and 

Im) 

No. deaths 

(no. herds) 

42 28 4.8 L, I 75 ± 13.3 5 

168 10 1.9 L, I, Im 259 ± 39.6 30 

365 2 0.3 L, I, Im 525 ± 94.9 82 

 

 

Figure 8.5: An epidemic curve for one Classical Swine Fever outbreak simulation in wild 

pigs in The Kimberley region, Western Australia (n = 290). 

 

Approach 2 

Simple Random Sampling of Herds (SRS) 

Statistical analysis of the 290 randomly selected herds demonstrated that the number of infected, 

susceptible, immune and dead herds significantly differed between time points for disease detection 

at 42, 168 and 365 days (Table 8.3). The number of latent and infectious herds at these time points 

following the outbreak did not vary significantly (Table 8.3). Demonstrated from Table 8.4 it can be 

seen that in 86.7% of simulations (13/15), disease was detected and delineated through the use of 

SRS with a buffer zone around selected herds. When a buffer zone was not applied, infection was 

detected, however not delineated.   
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Table 8.3: Model estimates following classical swine fever introduction identifying extent of spread at time points 42, 168 and 365 post 

incursion across the Kimberley region, Western Australia, 2011 (standard deviation displayed in table). 

 

 

 

 

 

 
a,b,c Within a column, values without a common superscript letter differ significantly (P < 0.05); 1Total infected refers to the number of latent, infectious and 

immune herds 

 

 

 

 

 

 

 

 

 

 

Model Duration 

(days) 

Time Point 

(days) 

Susceptible 

Herds 

Latent Herds Infectious 

Herds 

Immune 

Herds 

Dead from 

Disease  

Average Total 

Infected1  

365 42 

(min, max) 

5209 ± 13.8a 

5168-5239 

16 ± 6.2 a 

3-41 

51 ± 9.0a 

29-73 

8 ± 2.4a 

2-14 

20 ± 4.5a 

8-34 

75 ± 13.3a 

168 

(min, max) 

4891 ± 57.4ab 

4763-5032 

15 ± 6.5a 

2-37 

45 ± 16.6a 

11-81 

198 ± 28b 

130-262 

154 ± 21.3ab 

108-204 

259 ± 39.6ab 

365 

(min, max) 

4378 ± 160.6b 

4044-4708 

14 ± 8.6a 

0-43 

53 ± 24.2a 

8-125 

458 ± 90.0c 

279-630 

400 ± 69.3b 

251-536 

525 ± 94.9b 
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Table 8.4: Model estimates comparing different model simulation runs following a classical swine fever introduction identifying extent of 

spread at time points 42, 168 and 365 post incursion using random selection of 290 herds across the Kimberley region, Western 

Australia, 2011 (Y = yes; N = No). 

Simulation Day Disease 

Detected 

Disease 

Delineated 

(with 

buffer) 

Infected Herds 

Outside Buffer (no. 

latent, infectious, 

immune) 

Disease 

Delineated 

(no buffer) 

No. Detected 

Infected Herds (no. 

latent, infectious, 

immune) 

Susceptible Latent Infectious Immune Dead 

75 42 Y Y - N 0,4,0 5202 9 51 14 25 

168 Y Y - N 1,1,9 4941 18 36 179 130 

365 Y Y - N 0,1,22 4608 5 22 370 299 

3 42 Y Y - N 1,2,0 5218 14 48 9 15 

168 Y Y - N 1,2,5 4872 18 69 172 173 

365 Y Y - N 2,4,21 4297 18 96 443 450 

35 42 Y Y - N 0,2,1 5211 7 55 8 23 

168 Y Y - N 1,0,5 4882 21 36 211 154 

365 Y N 1,4,0 N 0,0,15 4498 1 19 408 378 

28 42 Y Y - N 1,2,0 5211 16 53 6 18 

168 Y Y - N 1,1,7 4946 11 15 187 145 

365 Y Y - N 4,12,18 4708 0 31 288 277 

49 42 Y Y - N 0,2,0 5217 20 45 7 15 
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168 Y Y - N 0,2,7 4904 10 26 205 159 

365 Y Y - N 2,5,21 4284 43 67 476 443 

17 42 Y Y - N 0, 1,1 5208 14 63 8 11 

168 Y Y - N 0,0, 5 5010 2 11 171 110 

365 Y Y - N 1,3,0 4513 15 69 381 326 

79 42 Y Y - N 0,2,1 5196 17 57 8 26 

168 Y Y - N 0,2,7 4965 16 38 153 132 

365 Y N 1,1,8 N 1,0,20 4518 7 9 430 340 

46 42 Y Y - N 0,2,0 5227 10 47 9 11 

168 Y Y - N 3,2,11 4876 14 46 212 156 

365 Y Y - N 1,4,26 4193 22 80 541 468 

81 42 Y Y - N 0,0,1 5209 18 44 9 24 

168 Y Y - N 0,1,9 4872 14 34 227 157 

365 Y Y - N 3,6,24 4286 25 95 486 412 

25 42 Y Y - N 1,1,1 5210 17 55 4 18 

168 Y Y - N 2,2,5 4966 15 30 161 132 

365 Y Y - N 0,0,22 4520 14 54 389 327 

12 42 Y Y - N 1,1,0 5217 15 45 8 19 
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168 Y Y - N 0,3,8 4878 13 41 221  151 

365 Y Y - N 1,3,30 4230 17 52 550 455 

67 42 Y Y - N 2,1,1 5230 14 41 7 12 

168 Y Y - N 0,3,5 4914 12 37 198 143 

365 Y Y - N 0,2,23 4395 14 56 448 391 

93 42 Y Y - N 0,2,0 5199 16 55 13 21 

168 Y Y - N 1,2,4 4892 10 42 204 256 

365 Y Y - N 0,6,24 4309 9 43 532 414 

22 42 Y Y - N 0,1,0 5229 9 43 9 14 

168 Y Y - N 3,0,10 4882 12 39 206 165 

365 Y Y - N 2,3,0 4430 25 80 383 386 

78 42 Y Y - N 0,2,0 5216 16 44 5 23 

168 Y Y - N 2,4,9 4793 23 72 212 204 

365 Y Y - N 1,4,25 4179 16 63 523 523 
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Surveillance Strategy Comparison with Disease Detection at Day 42 

Surveillance length did not vary significantly between radial and leap frog sampling when infection 

was detected at day 42, 168 and 365 (P = 0.208 and P = 0.175, respectively; Table 8.5). A greater 

number of cells were sampled when adopting a leap frog approach. At day 42 of disease detection, 

the epidemic lasted on average 31 days longer when using leap frog sampling in comparison to radial 

sampling. This was not significantly different (P = 0.927; Table 8.5). In terms of the number of total 

infected herds, leap frog sampling resulted in a higher number of infected herds during the course of 

an outbreak in comparison to radial sampling, however this was not significant (P = 0.715; Table 8.5). 

With the application of a buffer, all infection was delineated when SRS was used.  

  

Surveillance Strategy Comparison with Disease Detection at Day 168 

A greater total area was covered following surveillance and control using a radial sampling approach 

(Table 8.5). The number of cells sampled was equivalent across both sampling techniques. At day 

168, radial sampling resulted in a maximum epidemic length of 489 days, 56 days longer in 

comparison to leap frog sampling. There was one isolated case (simulation 28) that lasted until day 

1,371 post incursion. However the remaining simulations were ≤ 489 days. The maximum epidemic 

length for leap frog sampling was 433 days. The length of an epidemic and the number of infected 

herds did not significantly vary between sampling type (P = 0.222 and P = 0.831 respectively; Table 

8.5). With the application of a buffer, all infection was delineated when SRS was used with infection 

detected at day 168.   

  

Surveillance Strategy Comparison with Disease Detection at Day 365 

Surveillance, using a radial approach, saw an average of 106 cells sampled with disease detected at 

365 days (Table 8.5). This was one cell greater when comparing with leap frog sampling. At day 365 

post incursion, radial sampling resulted in an average epidemic length of 500 days with a maximum of 

663 days reached (Table 8.5). Leap Frog sampling resulted in an average epidemic length of 498 days, 

with a maximum of 792 days. These did not significantly differ (P = 0.999; Table 8.5). The total 

number of infected herds did not differ significantly between sampling approaches (P = 0.963; Table 

8.5). Although a greater total area was covered using a radial sampling approach, this was found to 

be similar between sampling types when disease was detected at 365 days (P = 0.991; Table 8.5). 

Overall if we compare the total area covered following disease detection at different time points, the 

area covered was significantly less if infection was detected at day 42 in comparison to day 365 (P < 

0.001; Table 8.5). When SRS was conducted, delineation of infection was not successful even with 

the application of a buffer zone. 
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Table 8.5: Model estimates following classical swine fever detection at day 42, 168 and 365 with radial and leap frog sampling for 

surveillance and control of disease across the Kimberley region, Western Australia, 2011 (standard deviation displayed in table). 

 

 

 

   

 

 

 

 

 

a,b  Within a column comparing sampling type for each time point, values without a common superscript letter differ significantly (P < 0.05) 
x,y, z  Within a column comparing disease detection day for radial sampling, values without a common superscript letter differ significantly 

(P < 0.05); s,t,u Within a column comparing disease detection day for leap frog sampling, values without a common superscript letter differ significantly (P < 

0.05).

Disease 

Detection 

(day) 

Sampling 

Type 

Average 

Epidemic length 

(days) 

Average Dead 

from Disease 

(no. herds) 

Average Total 

Area covered 

(km2) 

Average Total 

Infected  

(no. herds) 

Average Culled  

(no. herds) 

Surveillance 

Length (days) 

No. cells 

sampled 

42 Radial 159 ± 31.6ax 74 ± 18.3ax 377 ± 103.5ax  183 ± 40.8ax 411 ± 30.7ax 8 ± 0.6ax 38 ± 3.6ax 

Leap Frog 166 ± 29.1as 80 ± 20.6as 414 ± 112.8as 199 ± 44.5as 419 ± 30.3as 9 ± 0.7as 39 ± 3.6as 

168 Radial 321 ± 115.2axy 220 ± 60.0axy 1,522 ± 894.1ay 538 ± 144.1axy 609 ± 31.5ax 13 ± 0.9ax 68 ± 5.6ax 

Leap Frog 306 ± 39.3as 218 ± 39.5ast 1,463 ± 397.9at 534 ± 92.8ast 609 ± 31.3as 14 ± 1.4as 68 ± 5.7as 

365 Radial  500 ± 42.0ay 461 ± 77.0ax 4,531 ± 1358.7az 1126 ± 185.5ay 510 ± 46.2ax 19 ± 2.1ax 106 ± 12.1ax 

Leap Frog 498 ± 48.2at 461 ± 75.4as 4,518 ± 1340.1au 1127 ± 183.2at 502 ± 63.7as 21.4 ± 2.4as 105.9 ± 2.4as 
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Discussion/Conclusion 

 

Disease Detection 

The earlier disease detection can occur, the more effective control strategies can be in containing an 

outbreak (Klinkenberg et al., 2005). Early detection can also help to minimise costs by reducing the 

amount of resources required for control (Nusser et al., 2008). At day 42 it was found that 28 herds 

were required for sampling to detect disease using a random sampling approach. Although this is a 

higher sample size in comparison to 130 pigs at 168 days and 24 pigs at 365 days, by detecting and 

containing an outbreak it the early phases, the impacts can be reduced. This was demonstrated in 

the model whereby when there was a delay in disease detection, an increase in the number of 

infected herds was seen. On day 42 of detection, there was the presence of only 75 infected herds. 

By day 365, 525 herds were infected, identifying a much greater spread of disease. This is further 

supported by (Shirley & Rushton, 2005a) who determined that during a FMD outbreak, if disease had 

been detected two days earlier, the eventual epidemic would have been half its size. It needs to be 

noted that there are limitations to simulation modelling due to variability and uncertainty of input 

parameters. Their results need to be considered along with other information sources for use in 

decision making (Clifford et al., 2011). Rather than focusing on specific output values, the trends in 

the results should be the focus (Clifford et al., 2011).  

 

Pig density is an ecological factor that can determine the potential for disease to be maintained and 

transmitted within a population (Doran & Laffan, 2005). Authors such as Pech and Hone (1988) have 

also discussed this effect in relation to threshold densities. They suggested that for disease to persist 

in a semi-arid Australian environment a threshold of 2.3-14km2 was required, in association with 

FMD. For CSF to be eradicated from a population, transmission needs to be reduced to a level 

where the virus can no longer maintain itself (Weesendorp et al., 2010). 

 The model utilised for this chapter used estimated pig herd data based on several data sources 

(refer to section 8.2.1). This identifies a need for further research into the current pig population 

based in The Kimberley region as this is such as important parameter regarding CSF transmission. 

Similarly, Cowled et al. (2012) identified the spatial structure and behaviour of wild populations as an 

important factor to be considered for wildlife disease management. The limitations of surveillance 

and control, in that they are only able to reach a proportion of a given population, indicates that 

more efficient strategies need to be developed to maximise the use of resources (Thulke et al., 

2009). Investigations into herd structure and the interactions of wild pig populations have been 

conducted (Cowled et al., 2008a; Spencer et al., 2005). It has been confirmed that sows will accept 

multiple matings and for lone boars to travel distances of up to 2km daily and with home ranges of 

up to 10km2, facilitating potential disease spread (Cowled et al., 2012; Spencer et al., 2005). 

 

Surveillance Strategies  

The use of a SRS surveillance approach was found to be effective across days 42, 168 and 365 post 

incursion for detection of infection. When a 10km x 10km buffer zone was in place, delineation of 

infection was successful following disease detection at days 42 and 168. By day 365 of an epidemic, a 

buffer zone did not delineate all infection. Moreover, in the absence of a buffer zone, delineation of 

infection was not successful in any simulation. Although a SRS approach was effective in detecting 

disease, it was suboptimal in terms of resource allocation and time. Wildlife disease surveillance is 

more complex than in livestock diseases. Due to limited knowledge on species abundance, 

distribution and susceptible populations at risk, thereby necessitating the consideration of alternative 

sample designs as effective means of tracking disease spread (Thulke et al., 2009). Similar to that of 

Nusser et al. (2008), a SRS approach was used to develop a baseline in which alternative surveillance 
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strategies were compared against. This further supported that SRS was not a practical strategy for 

effective allocation of resources in terms of disease detection in wildlife populations.  

 

The use of radial and leap frog sampling allowed a more targeted approach to be utilised in the event 

of an outbreak. By adapting sampling techniques based on a specific epidemic event, this can assist in 

improving effectiveness (Thulke et al., 2009). On day 42 post incursion, the most effective 

surveillance strategy to contain an outbreak was radial sampling. During the early stages of the 

modelled outbreak, disease dispersal was limited. By implementing a surveillance area around the 

index cell, this allowed delineation within an average of 159 days. Disease detection on day 168 

demonstrated that further spread of disease had occurred through the population. In this situation, 

the most appropriate sampling technique was leap frog sampling. This allowed for a reduction in 

total area covered and a lower average for total herds infected. Although surveillance duration was 

slightly longer, by an average of only 1 day, this was not significant (Table 8.5). Following a year of 

disease spread before detection of infection, when comparing radial and leap frog sampling, the total 

area covered during surveillance and control was greater for radial sampling. Surveillance length was 

slightly greater for leap frog sampling, however, not significantly different (Table 8.5). The total 

number of herds infected and dead were similar (P = 0.963 and P = 0.965, respectively). For this time 

point, the use of leap frog sampling would be more appropriate. Although similar figures were 

obtained from the model for both radial and leap frog approaches, the ability for leap frog 

surveillance to detect the extent of an outbreak more rapidly due to the process of sampling, this 

can be seen as a more suitable approach when an outbreak has not been detected for a lengthy 

period and there has been a greater level of spread through a population. 

We can conclude from this analysis that, due to the complexity of wildlife population dynamics and 

herd behaviour, a targeted approach to surveillance needs to be conducted for the effective use of 

resources and time. The use of SRS can be seen as suboptimal, although disease was detected. The 

detection and containment of an outbreak needs to be as early and rapid as possible. Using a more 

situation-based surveillance approach and accounting for disease distribution and the time period 

over which an epidemic had occurred was the best way to approach the selection of a control 

strategy. Radial and leap frog surveillance have demonstrated their ability to improve the 

effectiveness of disease detection at various stages of a disease outbreak. These sampling strategies 

have been able to model potential outcomes following a CSF incursion and their ability to minimise 

impacts. These results can be used to assist in the allocation of resources, decision making and 

improving the efficiency of intervention strategies.  
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Appendix 2 - Decision Support Flow Chart for APL Use During a CSF Epidemic in Feral Pigs  
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Explanatory Notes (Numbers on Flow Diagram Correspond to the Text below) 

 

Background: APL has previously signed a deed under the emergency animal disease response 

agreement to fund 50% of the costs of responding to an outbreak of a Classical Swine Fever (CSF). 

This response may reach 1% of GVP (approximately $8 million) but can only exceed this with 

further agreement. An initial response will be shaped by an emergency animal disease response plan 

(EADRP) (written by the state department of agriculture where the outbreak has occurred in 

consultation with other parties such as industry). This document will be written in haste in real time 

and will direct the response to the epidemic.  

APL has an opportunity to influence the EADRP at several levels, but this will occur formally through 

membership of the consultative committee on emergency animal diseasesi (CCEAD) and the national 

management group (NMG). These groups have technical and management oversight of emergency 

animal disease responses respectively. Practically, APL‘s membership of the CCEAD and NMG will 

allow it to contribute to decisions on the EADRP. However, APL will require a good understanding 

of the technical issues in order to make excellent decisions that may bind members to significant 

future cost recovery levies. This document is designed to provide a simple technical tool to assist 

this decision making in response to a potential CSF outbreak in feral pigs.  

1) Assuming there is a single passive surveillance detection of an infected feral pig herd 

2) Aerial surveys using slow, low flying helicopters are a well documented means of 

counting and observing distributions of wild animals. Peter Fleming and John Tracey 

at NSW DPI are very experienced in this method (Fleming and Tracey 2008) ii 

(Fleming and Tracey, 2008).  

3) Epidemic fadeout occurred almost invariably during simulation modelling of CSF in 

feral pigs where densities were less than 1 pig km-2 (Cowled et al 2012)iii. That is, 

simulated epidemics of CSF were not sustained longer than a few weeks when 

introduced to low density populations.  

4) An effective surveillance technique was progressively expanding the infected area 

using a 10x10 km grid template. 4-5 pigs from each herd within a grid cell can be 

sampled. Assume approximately 60-80% of pig herds could be sampled, but 

surveillance is discontinued when disease is detected. This allows effective delineation 

of the epidemic area. See Cowled et al. (2012). 

5) Saunders and Bryant (1988)iv demonstrated that 80% of feral pigs in a local area can 

be shot from a helicopter. Cowled et al. (2012) used simulation modelling to 

demonstrate that various combinations of culling proportion and culling zone width 

will lead to disease fadeout (e.g. 60% of pigs culled over a 20 km zone around an 

epidemic).  

                                                           
i http://www.daff.gov.au/animal-plant-health/animal/committees/ccead 
ii FLEMING, P. J. S. & TRACEY, J. P. 2008. Aerial surveys of wildlife: Theory and applications - 

Preface. Wildlife Research, 35, III-IV. 
iii COWLED, B. D., GARNER, M. G., NEGUS, K. & WARD, M. P. 2012. Controlling disease 

outbreaks in wildlife using limited culling: modelling classical swine fever incursions in wild pigs in 

Australia. Veterinary Research, 43. 
iv SAUNDERS, G. & BRYANT, H. 1988. The evaluation of a feral pig eradication program during a 

simulated exotic disease outbreak. Australian Wildlife Research, 15, 73-82. 


